MATHEW, M. & PALENIK, G. J. (1974). Acta Cryst. B30, 2381–2385.

- NEWCOMB, M. & CRAM, D. J. (1975). J. Amer. Chem. Soc. 97, 1257–1259.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- SHMUELI, U. (1972). TMA. Thermal Motion Analysis, Department of Chemistry, Tel-Aviv Univ., Tel-Aviv.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- STROUSE, C. E. (1975). To be published.
- SUTTON, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement. Spec. Publ. No. 18. London: The Chemical Society.
- TRUTER, M. R. (1973). Struct. Bond. 16, 71-111.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758-759.

Acta Cryst. (1975). B31, 2600

Die Kristallstruktur von Bis-(N,N'-diäthylthioselenocarbamato)-kupfer(II)

VON J. KAISER, R. RICHTER UND J. SIELER

Sektion Chemie der Karl-Marx-Universität, DDR-701 Leipzig, Liebigstrasse 18, DDR

(Eingegangen am 19. November 1974; angenommen am 4. April 1975)

The crystal and molecular structure of bis-(N, N'-diethylthioselenocarbamato)copper(II) has been determined by single-crystal X-ray diffraction methods. The structure was solved by conventional Patterson and Fourier heavy-atom techniques followed by block-diagonal least-squares refinement which resulted in an R value of 0.13 for 2040 independent reflexions from Weissenberg photographs. The crystals are monoclinic with space group P_{2_1}/c and cell dimensions (Guinier data) a=9.575 (6), b=11.245 (6), c=16.791 (8) Å, $\beta=112.89$ (8)° and Z=4. The copper atom is located inside a tetragonal pyramid of chalcogen atoms which consists of two centrosymmetrically related molecules of the complex. Its position is 0.27 Å above the base of two sulphur and two selenium atoms in a *trans* position and 2.884 Å below a fifth atom (selenium) belonging to the second molecule of the pair. The other average bond distances are Se-C 1.82, S-C 1.83, C-N 1.36 and N-C 1.49 Å.

In den letzten Jahren wurden von Newman & White (1972), Peyronel, Pignedoli & Antolini (1972), Agre & Shugam (1972) und anderen Röntgenkristallstrukturanalysen von Dithiocarbamatkomplexen (Ligand dtc⁻) mit Übergangsmetallen publiziert. Demgegenüber gibt es nur wenige Arbeiten (Bonamico & Dessy, 1971; Noordik & Smits, 1974) über Strukturbestimmungen von Diselenocarbamaten (Ligand dsc⁻). Tanaka & Sonoda (1971) sowie Heber, Kirmse & Hoyer (1972) synthetisierten Komplexe mit dem Liganden Thioselenocarbamat (tsc⁻). Wir untersuchten das Bischelat Cu(tsc)₂, wobei im Laufe der Strukturbestimmung ein Teil der ursprünglich publizierten Kristalldaten (Kaiser, Hoyer & Höhne, 1972) korrigiert werden musste. Die Kristallstruktur von Cu(tsc)₂, deren Parameter nach dem letzten Ver-

Tabelle 1. Atomkoordinaten und anisotrope Temperaturfaktoren $(\times 10^4)$ für Cu(tsc)₂ mit Standardabweichungen (e.s.d.) in Klammern

Die Temperaturkoeffizienten	b_{ij} sind durch den A	usdruck $T = \exp\left[-(b_1 + b_2)\right]$	$_{1}h^{2}+b_{22}k^{2}+b_{33}l^{2}$	$+b_{12}hk+b_{13}hl+b_{23}kl$] gegeben.
-----------------------------	---------------------------	---	-------------------------------------	--

	x	У	Z	<i>b</i> ₁₁	b22	b33	b_{23}	b ₁₃	b12
Cu(1)	1933 (3)	319 (3)	652 (2)	141 (4)	78 (6)	43 (1)	-12(3)	65 (3)	-15 (6)
Se(2)	3441 (3)	2187 (3)	1081 (2)	178 (4)	120 (5)	5 7 (1)	-9(3)	85 (3)	-16 (6)
S(3)	2019 (4)	625 (5)	2057 (2)	76 (4)	13 (8)	20 (1)	-9 (4)	22 (4)	-13 (7)
S(4)	2583 (5)	-313(6)	-487 (3)	128 (5)	20 (9)	30 (2)	-13 (5)	74 (5)	- 36 (9)
Se(5)	730 (3)	-1698(3)	315 (2)	164 (3)	108 (5)	45 (1)	-1(3)	69 (4)	-5(5)
N(6)	372 (2)	270 (2)	276 (1)	116 (23)	111 (32)	45 (7)	-17(22)	54 (21)	-29 (38)
N(7)	139 (1)	- 265 (2)	-101 (1)	92 (16)	38 (26)	27 (5)	-13 (16)	36 (14)	2 (27)
C(8)	313 (2)	194 (2)	207 (1)	99 (19)	36 (33)	30 (6)	26 (20)	47 (18)	-17 (34)
C(9)	465 (2)	375 (3)	277 (2)	211 (35)	40 (48)	67 (12)	- 34 (33)	112 (33)	- 99 (57)
C(10)	357 (2)	244 (3)	359 (1)	121 (39)	123 (39)	31 (9)	-45 (26)	32 (24)	- 76 (45)
C(11)	358 (3)	480 (3)	243 (2)	208 (41)	124 (50)	68 (13)	-74 (37)	92 (38)	- 16 (64)
C(12)	486 (3)	160 (3)	418 (2)	147 (42)	151 (51)	72 (14)	-22 (38)	53 (39)	- 52 (67)
C(13)	156 (2)	-170(2)	- 50 (1)	119 (22)	36 (35)	36 (7)	3 (22)	60 (20)	-17 (38)
C(14)	214 (2)	-267(3)	-164(1)	179 (29)	77 (42)	38 (10)	-2 (29)	93 (27)	- 29 (50)
C(15)	43 (3)	-375(3)	-100(1)	149 (30)	76 (44)	55 (10)	-9 (29)	74 (28)	-3 (50)
C(16)	107 (3)	-242(3)	- 257 (2)	194 (37)	115 (48)	47 (12)	-42 (35)	63 (34)	-133 (61)
C(17)	139 (3)	-480(3)	-52(2)	197 (37)	134 (46)	62 (12)	-14(35)	116 (35)	54 (60)

J. KAISER, R. RICHTER UND J. SIELER

Tabelle 2. Beobachtete und berechnete Strukturfaktoren

x FO FC	K 47 85	# F0 FC	4 F0 FC	K FD FC	s f0	FC K	ra r c	K 17 FC	# F0	FC	« F(, rc	ĸ	70 FC	×	F0 FC
Me A, Le 1 1 2782 2216 2 521 -496 3 796 -341 6 416 -342 5 1007 1473 6 873 -470	4 41V -414 9 1245 -118c 4 55v 023 Mu 1+ LU 1 1 292 -17v 9 74 20	HE -1. LE 1 1484 1305 2 1/3 374 3 855 -801 4 363 -805 5 568 643	3 940 393 4 171 -144 5 135 -46 6 71 -173 40 -1. Le 18 0 143 -131	5 50 -60 6 388 -384 HT 2, LE 14 C 207 -2.0 1 367 -399 2 46 49	H# -2. L 8 4*0 1 947 7 4*5 3 355 4 *9 5 2*6	14 4 -314 He 3 554 -433 1 1 -356 1 1 -356 2 1 -180 3 9	46 -44 , Lo 10 41 -193 41 -130 43 -146 19 180	1 315 354 2 52 24 3 530 -46 4 140 -149 5 496 471 6 624 -534	6 62 Hs 4, 1 10 2 43 3 4 4 54	L -642 L 7 -175 -419 171 -516	3 41 4 11 5 27 6 41 140 -4,	10 -371 13 -42 11 -174 14 468 1 Lo 18 10 714	1 23 4 5 4	♥1 32 277 -209 422 632 71 7 312 -123 433 -416	123454	30 -61 70 -84 676 -654 1308 1275 62 65 71 129
the 0, Le 2 0 1443 1978 1 1923 -1439 2 341 342 3 190 86 4 148 201 9 1619 -134 6 1290 1104	4 920 -983 4 -12 4 513 -57 He 1. LE d 0 440 347 1 924 -921 9 27 -10	H= -1, L= 2 0 2813 2822 1 547 -546 2 154 -179 3 1802 -945 4 71 182	2 945 220 3 71 -67 4 157 169 5 36 -72 6 71 49	3 100 -148 4 71 88 5 235 -323 6 222 -107 He 2, Le 15 1 328 -246 2 234 -227	8 46 He -2, L 1 343 2 359 3 272 4 R6 5 14	20 5 15 6 1 -334 He 3 343 1 -216 2 1 -84 2 1 -84 2 1 -84 3 9	71 113 97 111	233 380 1 198 -178 7 198 162 3 184 174 4 252 -216 5 475 -648 4 133 113	4 54 Ha 4, 1 52 2 15 3 4	- 915 - 915 - 915 - 116	2 11 3 4 4 31 9 10 6 9 4	11 35 14 -408 13 -322 12 157 19 515 1 L= 11 14 37		534 -511 349 -342 174 216 259 -242 67 59 398 -328 398 -328 303 -279	1 1 2 3 4 9	-9, L+ 18 899 248 163 -264 71 34 898 364 274 -384 475 518 176 318
No 4, Lo 3 1 994 541 2 361 -293 3 399 -387 4 390 -326 9 093 440 4 64 -970	3 19 -193 4 532 -60, 4 375 -392 7 731 691 84 1, L4 3 1 9, -143	654 79 He +1, L0 3 1 1254 1201 2 71 145 3 1311 -1336 4 399 -369	3 3:0 240 4 71 0 7 26 -12 H= -1, L+ 20 8 128 145 1 71 0	6 193 -214 H= 2, L= 16 d 428 -393 1 224 -179 2 38 -16	0 161 H+ -2, L 0 74 1 262 2 219 3 74	104 9 164 9 82 He 3 276 6 3 10, 1 4 111 1 4 164 7 9	71 -140 19 -119 , L+ 18 37 -2~2 35 -369 91 403	HE VJ, LE 1: 1 71 7 71 39 1 239 -266 4 623 -321 5 376 -270 6 471 -30;	5 45 6 19 Hr 4, 1 54 2 15 4 15	-448 -122 L= 9 -580 -176 -176	2 3 3 5 4 3 5 5 6 3 HB -4,	487 78 -612 71 -145 79 548 13 291	HT 1 2 3 4 5 6	5, L= 7 535 -494 214 -262 293 205 49 -17 327 -202 222 -231	H. 123456	-8, Lo 11 266 234 39 -36 71 -118 203 303 47 -49 259 241
He F, La 4 6 741 283 1 129 -198 2 992 919 3 34 -99 4 954 -656	3 743 4860 4 1203 -1103 4 323 -206 6 715 644 He 1, Le 4 6 503 498	D 151/ 1424 425 -365 Mu -1, Lu 4 6 1325 1407 1 302 -212 2 1523 -1426 3 369 201	3 71 -47 W 2. L0 0 0 1554 -452 1 2012 2060 2 1286 -4106 3 1977 -1084 4 1564 -4507	HH 2, Le 17 1 36 -56 He 7, Le 18 0.141 -154 He -2, Le 1	5 49 6 322 He -2, L 1 51 2 45 3 44 4 45	-41 -291 5 -38 He 7 -11 1 2 -07 2 9	48 -64 49 -70 19 -207 , Lu 13 73 -201 59 -244	HE +3. LB 14 8 590 -490 1 270 235 2 311 -273 3 586 -407 4 232 -293 9 469 -530	+ 23 + 4, + 60 1 24 2 15 4 19	-232 -232 -577 -229 94 175	1 61 2 54 3 7 6 21 5 51 6 32	17 584 13 -587 11 -83 18 262 16 621 15 268	Na	5, L0 8 701 -448 53 -22 71 73 67 97 50 -97 136 161	H. 123.	-B, L= 12 200 144 327 301 263 278 42 4 71 -115 402 344
9 1117 - 1199 6 603 636 Me 0, Le 3 1 928 414 2 918 196 3 936 -597 4 1299 - 1149	1 13/1 13/9 2 292 -33' 3 675 -38' 4 13/ -239 4 13/ -239 4 14: -246 A 30 33 HE 1. LE 2	4 374 484 5 224 -291 6 462 448 He -1, Ly 9 1 718 707 2 167 72 3 441 -426	5 431 -386 6 442 417 He 2, Le 1 1 18%6 -*830 2 13%7 1428 3 16%8 -*614 4 1146 -*146	1 505 -4(1 2 199 104 3 482 -483 4 1847 19(8 5 544 -560 6 539 465	5 127 6 83 Ha +2, L 8 252 1 221 1 221 3 40	-173 5 1 -56 6 1 -18 He 7 -217 0 9 -139 1 1 -44 1 1	- 161 70 - 134 - 14 - 13 - 13 - 133 - 133 - 133	<pre>m 40 -3y 40 -3, 10 15 1 647 -596 2 100 141 3 247 -265 4 345 -382 4 311 -277</pre>	4 18 5 51 6 211 H= 4, 1 27 2 211 5 71	-232 29 -240 L= 11 -312 -169 46	1 54 2 30 3 11 4 10 5 34 6 19	539 5 -160 7 - 7 6 257 5 134 5 134	+ H= 2 5	89 -59 5, Le 9 107 -110 48 -12 48 110 204 -204 232 102	• Hi	671 565 -5, Ls 13 621 552 497 444 55 45 71 183 417 316
9 997 -510 6 693 -581 He 0, L. 6 8 1641 -1479 1 1934 1133 3 394 -298 3 1365 -1359	1 94 -119 7 544 594 7 702 -704 4 114 -1030 5 J30 275 6 71 115 Mm 1, Lm 6	4 71 57 5 233 317 6 463 -939 He -1, Le 6 6 767 722 1 347 -359 2 23 19	5 01 -83 6 498 428 H# 2, Le 2 0 308 369 1 1562 1564 2 1817 -1945 3 143 143	$\begin{array}{c} 0 & 305 & -305 \\ 1 & 724 & 6t4 \\ 2 & 228 & 339 \\ 3 & 12^{\circ} & 84 \\ 4 & 1090 & -1081 \\ 5 & 1513 & 1308 \\ 6 & 405 & 343 \end{array}$	4 71 5 71 6 71 1 205 3 195	-178 5 1 -107 5 1 -100 5 1 -107 5 1 -10	1 -19 1	n 4 -10 He -3. Le 10 n 678 -578 1 37~ 383 2 283 -266 3 47 47 4 371 -247	4 71 5 31 Hs 4, 0 38 1 51 2 71 3 291	-29 -378 L= 12 -397 -39 -135 -305	1 87 2 7 3 4 21 5 41 6 4	8 806 9 -36 1 -33 5 76 2 168 2 -365 6 -44	H= 1 2 3 4 5	5, L= 10 53 -52 52 -7 71 110 143 -127 46 -50 184 45	6 No 1 2 3 4	572 464 -5, Lo 14 977 007 403 346 341 236 147 145 338 356
4 040 -020 9 1931 -1021 6 71 46 No 6, Lo 7 1 1190 -1192 7 465 439 3 749 -738	0 71 -11 1 672 700 2 417 -862 3 119 -103 4 133 129 5 349 -310 4 111 125 He 1. La 7	3 24 -5 4 566 -482 5 1077 -1020 6 153 192 H# -1, L= 7 1 103 -90 2 2 304 -251	4 310 -240 5 143 -22 6 200 -314 Hm 2, Le 3 1 310 -350 2 789 841 3 921 -155	M* -2. LE 3 1 365 440 2 71 39 3 431 -384 4 404 372 5 45 14 6 864 915	5 "1 He -2, L 0 28/ 1 34 3 "1	-A8 He 3, -70 0 3 -301 He 3, 20 1 143 1 1 - 31 He 3	, L. : * 71 74 , L. 17 10 111 , L. 1	5 70 42 A =80 Hs =3, 0,s 17 1 208 -236 7 37/ 344 3 71 -112 4 71 -72	4 13 7 13 He 4, 1 26 2 41 3 21	-218 115 L= 13 -310 -96 -189	HE -4. 1 10 2 4 3 4 4 34 5 7 6 27	L= 15 142 17 -27 18 -74 18 -250 13 97 14 -205	4 He	87 -171 5, Le 11 40 -60 179 -187 71 -107 71 -707 42 52	9 6 Ha 1 2 3	707 791 139 130 -9, L0 19 707 791 139 130 139 131
4 1872 -1357 9 243 -233 6 71 61 	1 393 -305 2 /36 720 3 323 -388 4 276 207 5 204 247 4 339 307	3 369 -209 4 667 -761 5 331 -398 6 641 -661 He -1, Le 8 0 1473 -1426	4 71 -222 5 75 23 6 386 374 ++0 8, Ls 4 8 247 276 1 144 138	HE -2, LE 4 0 549 625 1 839 863 2 349 -386 3 232 -391 4 145 -74 5 992 932	1 19 Ha J, L 0 140 1 776 2 1943	29 L 7 2 8 3 19 -110 5 4 724 6 1 -1657	23 -684 19 -758 19 -1404 19 1389 19 476 13 -9 10 2	5 172 -198 6 370 24 44 -3, 14 15 7 45 -97 7 280 214 2 285 -147 3 41 - 5	He 4, 0 42 2 573 4 33 He 4,	Le 14 -16 -15 -164 -7 Le 15	H= -4, 9 98 1 9 2 0 3 9 4 20 5 42	L= 16 -268 -13 -13 -27 -5 -43 -79 -2 -315 -315	H# 1 2 4	5, L= 12 44 -33 141 -142 255 -222 37 45	9 • •	447 301 109 70 -B. Le 16 749 647 93 136 95 64
3 921 -205 4 937 -143 5 93 -49 6 292 -344 40 0, Lu 9 1 990 -477	0 219 167 1 302 229 7 161 94 3 850 79 4 264 269 9 144 -189 4 24/ -250	2 365 - 352 3 312 - 273 4 909 - 913 5 694 - 645 6 301 257 He -1. Le 9	3 443 577 4 219 206 5 408 -422 6 448 -495 We 2. Le 5 1 725 -651	H# -2, L= 5 1 1963 1961 2 684 608 3 481 -469 4 44 363 5 1013 1033	3 3,4 4 103 5 447 6 107 Mm 3, L 1 81 2 811	127 127 125 0 27 1 1 120 1 120 2 7 1 3 0 1 3 0 1 4 5 -155 5 120 770 6 1	04 -273 16 -1233 17 -032 14 923 70 -481 14 1057 19 -102	4 41	1 107 He 4, J 211 He -4,	L# 14 L# 14 L# 1 L# 1	H= -4, 1 7 2 27 3 7 4 7 5 4	L= 17 1 -89 7 213 1 119 1 -18 6 -47	1 H= 2 4	39 - 38 5, Le 14 71 164 26 56 71 14	Na 17	351 222 490 -372 107 171 -5, La 17 103 177 40 32
3 484 -423 4 150 -191 5 141 -71 4 294 395 No 0, Le 10 6 185 -128	HE 1. LE 7 1 290 237 7 71 36 3 826 402 4 136 147 9 199 -201 6 221 -194	1 990 -007 2 876 825 3 197 -163 4 480 -624 5 405 -308 6 523 432 He -1, Le 10	2 839 824 3 442 -362 4 237 170 5 71 -135 6 274 2°6 He 2, Le 6 8 979 -943	6 1034 930 H= -2, L= 6 0 2546 2570 1 1361 1243 2 175 -180 3 329 331 4 855 730	3 456 4 203 5 174 4 78 He 3, L 0 203 1 210	-597 219 Hu -1, 221 1 01 6 2 16 7 4 12 236 5 2 281 6 1	Le J 4 700 4 -347 4 -448 10 1102 5 -143 79 -173	4 34 22 ME -3, LE 20 A 243 -211 1 30 -11 3 260 178	1 100 2 7/1 3 21 4 61 5 61 6 524 He -4,	-703 -703 146 -673 70 -465	• 7 H= -4, 9 11 1 30 7 32 3 4 4 7	L 18 L 18 9 245 8 234 2 29 1 -73	H= -	-5. Le 1 384 261 953 -881 853 810 71 -113 253 -237 842 -792		49 -17 347 -267 308 200 275 -234 -\$, L0 10 196 156 71 15
1 970 107 2 642 -627 3 71 139 4 97 -140 9 176 -139 6 919 -548 10 0, Lu 11	Ha 1, La 1J 8 493 -520 1 103 -97 2 705 749 3 71 -8 4 42 7, 9 416 -39/	q 320 -347 1 1166 1281 2 224 -276 3 71 -156 4 289 -328 5 94 60 6 179 -289 Mg -1, Le 11	1 294 107 2 611 605 3 1283 1161 4 145 113 5 71 82 6 269 240 He 2, Le 7	5 943 415 6 235 270 M= -2, Le 7 1 1716 1705 2 271 201 3 71 -200 4 991 -365	2 71 3 425 4 41J 5 375 8 386 He 3, L	24 472 Hu -1, -321 0 21 -201 0 1 1AC -937 2 43 = 3 4 4 = 3 4 4 = 3 4 1	Le 4 19 156 15 -461 15 302 15 898 16 -463 17 192	43, L. 21 1 26 -3; 4. 4. L. 5 P 659 -633 1 302 252 P 8474 (266	0 254 1 125 2 1111 3 501 4 323 5 215 6 115	333 -119 -1098 -597 347 239 48	7 4 6 7 HE -4, 1 4 3 17 5 19	1 -34 1 -94 L= 19 4 40 7 141 8 -271 3 -107	H 8] 1 2 3 4 5	-5, Lo 2 023 -924 011 -622 310 409 799 -648 59 -79 131 -63	23 4 5 4 10 10 11	43 -14 71 97 41 98 292 -238 71 71 -5, La 19 71 85
1 83684 2 136 164 2 136 164 4 15 9 164 -159 6 107 -197 10 0, Lo 13	• 227 -190 He 1, Le 11 1 303 -219 2 138 177 3 609 669 4 227 -243 5 338 -335	1 142 -71 2 725 441 3 201 -303 4 401 -509 3 64 -99 6 421 431	1 511 379 2 654 673 3 917 854 4 572 404 5 199 -292 6 608 564 Me 2, Le 8	5 976 1021 6 71 -63 HH -2, LH 8 6 1928 1837 1 676 -591 2 71 -18	2 438 3 403 4 487 5 676 6 372 He 3, L	546 6 91 667 -388 He -3, -657 -442 1 2 11 - 4 3 2 - 4 4 2 - 4 3 2 - 4 4 4 - 4 4 2 - 4 4 4 - 4 4 4 4	14 570 Le 9 17 213 19 -41 11 -110 18 377 19 166	3 1314 1283 4 391 -396 5 161 -32 6 137 171 H= 6, L= 1 1 784 623 9 852 600	1 94 2 993 3 847 4 293 5 333 6 199	-572 -535 -15 310 -163	H0 -4, 0 17 1 20 3 29 H0 -4,	L= 28 1 -110 2 186 6 -191 L= 21	H .	110 152 5, L= 3 451 -503 450 -517 190 -206 34 -4	4 5 Hu 1 3	194 -165 35 -97 -5, Le 20 171 -124 36 51 225 -199
700 -700 913 -310 913 -510 913 -50 100 -110 100 -110 100 -110 100 -110	He 1, Le 12 445 -443 7 552 586 2 444 426 3 167 -161 4 168 161	8 69 74 1 366 379 2 568 -595 3 41 -6 4 133 203 5 220 -206 6 261 -236	8 139 -36 1 959 561 2 1352 1351 3 36 -47 4 197 218 5 219 244 6 131 -124	3 71 107 4 905 447 5 1106 -1053 6 433 401 Hu -2, Lo 9 1 479 492 2 126 -05	0 1100 1 350 2 632 3 71 4 32 5 412 6 115 Me 3, L	-1142 6 4 433 6 4 609 Hg -1, -16 8 7 -296 1 4 96 2 3 9 3 1 9 3 1	19 380 19 866 19 742 12 319 11 76 10 239	3 1649 1967 4 71 -65 9 193 -261 4 257 245 HT 4, Lp 2 0 71 -197 175 -197	0 603 1 707 2 1200 3 229 4 160 5 71 6 274	564 -609 -1214 -90 -141 -7 -202	1 10 H= 5, 1 106 2 109 3 24	7 -181 Le 8 6 165 6 1076 5 987 6 -311		······································	#= 1 %	-8, Le 21 163 -164 6, Le 8 245 316 319 -277
1 800 .243 2 070 461 3 062 431 5 070 -207 6 347 376 No 8, La 14	4 03 -119 He 1. Le 13 1 268 147 9 134 163 1 934 487 4 71 -145	HE -1, LE 13 1 329 -296 2 429 433 3 68 -81 4 71 -82 5 163 174 6 219 177	NB 2, LB 9 1 342 207 2 149 190 3 907 920 4 417 -440 5 71 -102 4 178 187	3 71 24 4 40 -450 9 432 301 6 595 -690 Hw -2, Le 10 8 236 188 1 140 109	1 425 2 010 3 521 4 171 5 285 6 595 He 3, L	-294 5 4 845 4 9 676 4 -7, -225 He -7, -315 1 13 934 2 97 6 6 3 9	6 874 3 873 Le 7 9 1428 9 494 4 185	2 134 - 146 3 550 -434 4 376 329 5 29' -324 6 10u -64 Ma 4, Le 3	HU -4, 1 254 2 1210 3 1211 4 319 5 33 6 759	-246 -1118 -1379 260 21 -666		7 393 2 259 3 -321 U 1 9 410 9 336 8 66:	· · ·	345 -346 493 457 71 -68 5, Le 5 357 -383 444 -478 643 -656	n. 1	195 -166 249 -163 442 207 877 -841 395 -344 6. L= 1 502 -504
1 507 273 2 601 570 3 974 277 5 130 210 6 09 -132 No 0, Le 19	4 110 -118 6 76 40 He 1, Le 14 6 74 -24 1 76 -103 9 267 207 5 189 -199	Mø -1, Lø 14 8 987 -240 1 255 236 2 248 258 3 466 486 4 284 194 5 222 297	HU 2, LA 10 8 138 -91 1 403 379 2 494 502 3 202 -350 4 349 307 5 96 -27 6 46 120	2 241 190 3 203 247 4 71 -165 5 530 -590 6 300 355 He -2, Le 11 1 _71 _49	1 711 2 680 3 168 4 125 5 173 6 109 Mm 3, L	685 5 4 694 6 65 112 He - 7 178 He - 7 154 2 8 - 291 1 7 2 7 2 2	17 404 10 059 18 2/97 19 657 18 145	1 217 274 9 307 432 3 996 1009 4 786 -775 5 104 132 6 415 255 80 4, L0 4	He -4, 2 109 1 940 2 1294 3 403 4 508 5 237	01 -998 -1236 -642 -467 -199	4 77 5 11 6 30 Ha S, 0 7 1 14 2 15	5 -731 7 147 2 443 U 2 1 124 9 184 3 175	4 5 4 H= -	134 -147 137 -177 87 71 5, La 4 374 348 551 -478 397 -1395	*****	466 -388 71 93 154 -156 71 28 497 -465 6, L8 2 875 -876
1 777 209 8 407 118 9 407 144 9 801 444 5 80 -118 4 141 134 80 8, La 10 8 818 -157	4 71 143 9 160 -180 6 329 -327 He 14 LE 19 1 71 -141 9 190 -281 9 46 -92	6 46 94 He -1, Le 19 1 272 991 4 348 374 4 348 374 5 91 -12	He P, Le 11 1 138 167 9 104 149 3 401 533 4 48 -32 9 195 270 8 166 137	2 500 597 3 233 146 4 524 -669 5 275 -244 6 160 -121 He -3, Lo 10 9 163 -383	1 384 2 249 3 595 4 503 5 201 8 203 8 203 8 203	392 4 4 292 4 4 299 6 7 594 6 7 -230 40 -7, 211 1 9 0 6 2 0		n 71 74 1 1140 1047 7 416 454 3 495 -577 4 544 401 5 285 179 4 1 ³⁷ -147 Me do Le 5	6 521 He -4, 2 96 8 1957 4 1014 5 36	394 L= 7 -345 -149 -945 958 -31	3 22 4 44 5 14 6 7 HF 5, 1 7 2 17	1 -236 5 500 3 -174 1 -36 L. 3 1 69 3 113	3 - 	449 -392 351 -249 67 96 181 -130 5. L= 7 984 -812 473 -819	1 2 3 4 5 4 7 6 16	391 -372 167 -169 198 225 71 -63 162 -197 280 -240 6, L= 3
1 144 344 9 330 341 8 992 -254 Mm 0, Le 17 1 47 -59 9 300 -17 8 599 170	6 175 -198 He 1, Le 16 8 279 -340 1 178 -139 7 164 -195 6 118 -83	4 115 125 No -1, Lo 16 1 106 141 2 514 502 3 46 60 4 820 175	H# 2, L= 12 8 612 565 1 58 -87 7 163 187 3 67 -61 4 697 663 9 52 46	1 447 990 2 928 984 3 410 -972 4 208 -420 9 529 -950 6 71 140 M4 -2, LB 13	5 62 1 289 2 317 3 514 4 389 5 324 6 141	3 33 17 4 90 323 5 4 474 410 Mu - 1, -207 -216 0 110 1 1	4 1284 1 12 12 14 10 15 12 16 1284 19 157	1 552 441 2 234 230 3 400 673 4 200 -274 5 71 80 6 167 -232 No 4, Lo 5	HU -4, HU -4, E 400 1 216 2 244 3 439 4 993	56 - 328 - 215 - 215 - 215 - 215 - 938	3 44 4 87 5 47 6 17 40 5, 1 3,	532 7 199 8 417 8 -174 6 -174 6 -174 6 -143	3 1 4 5 4 1	473 -1448 410 387 283 257 132 187 5, La 8 143 131 825 -808	123494	439 -587 112 -142 295 283 252 314 531 -548 114 -54 6, L0 4
No 1, 1, 1 1 017 - 1 1 017 - 1 1 017 - 1 1 011 - 1 1 10 - 1 1 10 - 1	Ha 1, La 17 1 200 -903 Ha 1, La 10 0 179 -121	9 71 70 4 179 -190 He -1, Le 17 1 94 73 2 71 -67	6 3Å6 -345 HU 2, LU 13 1 207 167 2 329 -316 3 334 339	1 884 -817 2 95 147 3 931 -831 4 894 -884 9 134 -72 6 184 -182	Ha 3, U 1 200 2 221 3 43 4 71 5 250	. 9 2 44 -241 4 11 -173 5 7 -103 He -3	1 -308 1 -270 1 -270 1 -269 1 -468 1 -468 1 -468 1 -468 1 -468 1 -468 1 -468 1 -11	8 510 365 7 236 -237 8 244 196 3 271 -281 4 767 691 7 565 -534	1 472 Ha -4, 1 381	389 449 Le 9 347 277	2 34 3 31 4 47 5 4 6 46 M0 5.	4 339 292 2 412 7 -14 8 -389	2 1 3 4 8	159 -1059 959 -872 624 -526 414 435 393 335 5, Le 9	*1234.96	844 -961 823 -185 448 433 43 -42 843 -438 72 -17 847 -865

2601

Tabelle 2 (Fort.)

feinerungszyklus in Tabelle 1 angegeben sind, nimmt in einer Reihe von Kristalldaten (Kimura, Yasuoka, Kasai & Kakudo, 1972), (Wijnhoven, Bosman & Beurskens, 1972) eine Mittelstellung zwischen Cu(dtc)₂ (Bonamico, Dessy, Mugnoli, Vaciago & Zambonelli, 1965) und Cu(dsc)₂ (Bonamico & Dessy, 1971) ein und ist isostrukturell mit den genannten Verbindungen. Die beobachteten und berechneten Strukturfaktoren sind in Tabelle 2 aufgeführt.

Die Struktur des Cu(tsc)₂ ist aus diskreten Molekülen aufgebaut. Die asymmetrische Einheit enthält ein Molekül. Jedoch haben die über die Symmetriezentren der Raumgruppe verbundenen Moleküle einen relativ geringen Abstand voneinander und bilden Paare, eine Struktureigenschaft, die auch an anderen Biskomplexen der Liganden dsc⁻ und dtc⁻ beobachtet wurde. Es liegen keine Dimeren vor (Newman, Raston & White, 1973).

In Tabelle 3 sind die Bindungslängen und -winkel des Moleküles Cu(tsc)₂ angegeben. Die intramolekularen Cu-S- bzw. Cu-Se-Bindungen in beiden Molekülhälften sind nicht signifikant verschieden. Ihre Mittelwerte sind gegenüber den reinen Dithio- bzw. Diselenoverbindungen um 0,03 Å bzw. 0,07 Å länger, während die Se-C-Bindungslänge auf Grund des partiellen Doppelbindungscharakters mit 1,82 Å kürzer als eine Se-C-Einfachbindung ist. Die S-C-Bindung ist mit 1,83 Å länger als bisher gefundene S-C-Bindungslängen vergleichbarer Substanzen. Das IR-Spektrum liefert im Rahmen seiner Aussagekräftigkeit einen Hinweis auf eine Bindungsaufweitung. Wir finden für die (C=S)-Bande eine Verschiebung nach Tabelle 3. Intramolekülare Abstände (Å) und Winkel (°) für Cu(tsc)₂ mit Standardabweichungen (e.s.d.) in Klammern

Cu(1)-Se(2) = 2,491(4)	C(13)–N(7)	1,35 (3)
Cu(1)-Se(5) = 2,508(4)	N(6) - C(9)	1,47 (4)
Cu(1)-S(3) = 2,354(4)	N(6) - C(10)	1,48 (3)
Cu(1)-S(4) 2,339 (5)	N(7) - C(14)	1,49 (3)
Se(2) - C(8) = 1,82(2)	N(7) - C(15)	1,54 (3)
Se(5) - C(13) = 1.82(2)	C(9) - C(11)	1,52 (4)
S(3) - C(8) = 1,82(2)	C(10) - C(12)	1,56 (4)
S(4) - C(13) = 1,84(2)	C(14) - C(16)	1,52 (3)
C(8) - N(6) = 1,37(3)	C(15) - C(17)	1,52 (4)
Se(2) - Cu(1) - S(3) = 78,3(1)	Se(5) - C(13) - N(7)	120 (2)
S(4) - Cu(1) - Se(5) 77,6(2)	C(8) - N(6) - C(10)	121 (2)
Cu(1)-Se(2)-C(8) = 81,7 (6)	C(13) - N(7) - C(15)	123 (2)
Cu(1)-Se(5)-C(13) 82,8 (6)	C(8) - N(6) - C(9)	124 (2)
Cu(1)-S(3)-C(8) = 85,8(6)	C(13) - N(7) - C(14)	120 (2)
Cu(1)-S(4)-C(13) 87,4 (7)	C(9) - N(6) - C(10)	116 (2)
Se(2) - C(8) - S(3) = 114(1)	C(14) - N(7) - C(15)	117 (2)
S(4) - C(13) - Se(5) = 112(1)	N(6) - C(10) - C(12)	112 (2)
S(3) - C(8) - N(6) = 125(2)	N(7)C(15)-C(17)	113 (2)
S(4) - C(13) - N(7) = 128 (2)	N(6) - C(9) - C(11)	107 (2)
Se(2) - C(8) - N(6) = 121(2)	N(7) - C(14) - C(16)	114 (2)

niederen Wellenzahlen (907 cm⁻¹) gegenüber der im reinen Cu(dtc)₂ zu beobachtenden und für die (C=Se)-Bande eine Verschiebung nach höheren Wellenzahlen (840 cm⁻¹) gegenüber der im reinen Cu(dsc)₂ (830 cm⁻¹) gemessenen Wellenzahl. Jensen & Krishnan (1970) geben für die Lage der (C=S)- und (C=Se)-Bande vergleichbarer Verbindungen Werte von 910–915 cm⁻¹ bzw. 820–830 cm⁻¹ an. Die Bindungslängen zeigen, dass der Bindungsausgleich durch Delokalisierung im Chelatring behindert wird. Die Se–C-Bindung besitzt starken Doppelbindungs-, die S–C-Bindung Einfachbindungscharakter. Für die C-N-Bindung finden wir in Übereinstimmung mit einer Reihe von Dithiocarbamaten einen Wert von 1,36 Å.

Die Autoren danken den Herren Dr R. Heber und Dr R. Kirmse für fördernde Diskussionen und ihr stetes Interesse an dieser Arbeit.

Literatur

- AGRE, V. M. & SHUGAM, E. A. (1972). Zh. Strukt. Khim. 13, 660-664.
- BONAMICO, M. & DESSY, G. (1971). J. Chem. Soc. S. 264-269.
- BONAMICO, M., DESSY, G., MUGNOLI, A., VACIAGO, A. & ZAMBONELLI, L. (1965). *Acta Cryst.* **19**, 886–897.
- HEBER, R., KIRMSE, R. & HOYER, E. (1972). Z. anorg. allgem. Chem. 293, 159-167.
- JENSEN, K. A. & KRISHNAN, V. (1970). Acta Chem. Scand. 24, 1088–1090.
- KAISER, J., HOYER, E. & HÖHNE, E. (1972). Z. Chem. 12, 118–119.
- KIMURA, T., YASUOKA, N., KASAI, N. & KAKUDO, M. (1972). Bull. Chem. Soc. Japan, 45, 1649–1654.
- NEWMAN, P. W. G., RASTON, C. L. & WHITE, A. H. (1973). J. Chem. Soc. S. 1332–1335.
- NEWMAN, P. W. G. & WHITE, A. H. (1972). J. Chem. Soc. S. 1460–1463.
- NOORDIK, J. H. & SMITS, J. M. M. M. (1974). Cryst. Struct. Commun. 3, 253-256.
- PEYRONEL, G., PIGNEDOLI, A. & ANTOLINI, L. (1972). Acta Cryst. B28, 3596–3600.
- TANAKA, T. & SONODA, N. (1971). Inorg. Chem. 10, 2337–2339.
- WIJNHOVEN, J. G., BOSMAN, W. P. J. H. & BEURSKENS, P. T. (1972). J. Cryst. Mol. Struct. 2, 7-15.

Acta Cryst. (1975). B31, 2603

The Crystal Structure of Tetramethyl-p-phenylene Ditoluene-p-sulphonate

BY M. W. WIECZOREK

Technical University, 36 Zwirki Street, 90-924 Lódź, Poland

AND N. G. BOKIY AND YU. T. STRUCHKOV

Institute of Elemento-Organic Compounds, Academy of Sciences, Moscow, U.S.S.R.

(Received 3 January 1975; accepted 21 April 1975)

A complete X-ray investigation was carried out for tetramethyl-*p*-phenylene ditoluene-*p*-sulphonate, $C_{24}H_{26}O_6S_2$. The compound crystallizes in the triclinic system with $a=8\cdot791_5$, $b=11\cdot109_1$, $c=7\cdot405_1$ Å, $\alpha=112\cdot53$, $\beta=120\cdot40$, $\gamma=86\cdot35^\circ$, $V=568\cdot44$ Å³, $\varrho_{calc}=1\cdot393$, $\varrho_{obs}=1\cdot381$ g cm⁻³, N=1, space group $P\overline{1}$. X-ray data were obtained on an automatic four-circle Hilger-Watts diffractometer. Least-squares full-matrix refinement of the structure with the use of isotropic temperature factors led to $R=9\cdot0\%$.

Introduction

Adams and co-workers (1940–1961) observed restricted rotation around the C–N bond in a series of suitably substituted aryl amines. Böhm & Zamłyński (1967) anticipated a similar phenomenon in the series of diesters of dihydroxybenzenes. On the basis of model considerations, they supposed that as for amines restricted rotation should lead to the occurrence of stable rotamers. However, despite very careful separa-